Ab initio investigation of molecular hydrogen physisorption on graphene and carbon nanotubes

نویسنده

  • David Carey
چکیده

Density-functional theory is used to investigate hydrogen physisorption on a graphene layer and on single wall carbon nanotubes. Both external and internal adsorption sites of 9, 0 and 10, 0 carbon nanotubes have been studied with the hydrogen molecular axis oriented parallel or perpendicular to the nanotube wall. A range of hydrogen molecule binding sites has been examined and it is found that hydrogen binds weakly to each of the graphitic structures and at all adsorption sites examined. Calculations using different functionals reveal that the binding energies are a factor of 2 larger for hydrogen bound inside the nanotubes than for adsorption outside the nanotubes or on the graphene layer. Furthermore, configurations of the hydrogen molecular axis parallel to the nanotube wall or graphene layer bind more effectively than configurations where the axis is normal to the carbon nanostructures. The differing behavior between the carbon nanostructures is attributed to the curvature of the structure and the hydrogen-carbon electron interactions, where analysis of the electron density reveals evidence of charge redistribution with little charge transfer. The potential of hydrogen physisorption to carbon nanostructures for hydrogen storage and delivery is also discussed.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Molecular physisorption on graphene and carbon nanotubes: A comparative ab initio study

The results of ab initio density functional theory calculations of molecular physisorption on a number of different adsorption sites on a graphene sheet and on a (10, 0) single walled carbon nanotube are discussed. Both the Vosko-Wilk-Nusair (VWN) local density approximation (LDA) functional and the Perdew-Wang (PW91) generalized gradient approximation (GGA) functional were employed in calculat...

متن کامل

Transforming carbon nanotubes by silylation: an ab initio study.

We use ab initio density functional calculations to study the chemical functionalization of single-wall carbon nanotubes and graphene monolayers by silyl (SiH(3)) radicals and hydrogen. We find that silyl radicals form strong covalent bonds with graphene and nanotube walls, causing local structural relaxations that enhance the s p(3) character of these graphitic nanostructures. Silylation trans...

متن کامل

Amino acids interacting with defected carbon nanotubes: ab initio calculations

The adsorption of a number of amino acids on a defected single-walled carbon nanotube (SWCNT) isinvestigated by using the density-functional theory (DFT) calculations. The adsorption energies andequilibrium distances are calculated for various configurations such as amino acid attaching to defectsites heptagon, pentagon and hexagon in defective tube and also for several molecular orientationswi...

متن کامل

Graphene nanostructures as tunable storage media for molecular hydrogen.

Many methods have been proposed for efficient storage of molecular hydrogen for fuel cell applications. However, despite intense research efforts, the twin U.S. Department of Energy goals of 6.5% mass ratio and 62 kg/m3 volume density has not been achieved either experimentally or via theoretical simulations on reversible model systems. Carbon-based materials, such as carbon nanotubes, have alw...

متن کامل

Time-domain ab initio modeling of photoinduced dynamics at nanoscale interfaces.

Nonequilibrium processes involving electronic and vibrational degrees of freedom in nanoscale materials are under active experimental investigation. Corresponding theoretical studies are much scarcer. The review starts with the basics of time-dependent density functional theory, recent developments in nonadiabatic molecular dynamics, and the fusion of the two techniques. Ab initio simulations o...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007